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Introduction

Target structure-based[1–3] or ligand-based[3–5] virtual screening
techniques are often used as alternative approaches to search
for novel active compounds. In many instances, insufficient
target structure and/or ligand information is available to
permit the application of both techniques. However, when
data availability is not a limiting factor it is possible to use
docking and ligand-based screening calculations in concert
and a number of attempts have been made to do so.[2, 6–12] In
most of these cases, structure- and ligand-based virtual screen-
ing techniques are combined in a sequential manner to enable
computationally increasingly demanding search calculations.[2]

In particular, given the computational expense of flexible dock-
ing calculations, large virtual libraries are often decreased in
size prior to docking by preselecting compounds that are simi-
lar to already known active molecules on the basis of 2D and/
or 3D similarity search calculations.[2, 6–8] This is in fact the most
typical serial application of similarity searching and docking,
and a number of successful structure-based virtual screens
have included a ligand-based prescreening step to substantial-
ly decrease the size of compound source databases.[2] Another
sequential use of structure- and ligand-based virtual screening
is second phase similarity searching using hits as reference
molecules that have been identified by docking.[9] In this case,
molecules that are similar to newly identified hits are selected
to explore the chemical neighbourhood of these hits and iden-
tify more potent analogues or alternative chemotypes having
similar activity. Sequential screening calculations have also
been fully integrated such that candidate compounds selected
from similarity searching are instantly subjected to docking,
with precomputed ligand similarities being incorporated into
the docking and scoring process.[10] In a benchmark investiga-

tion, this integrated approach identified approximately 60 % of
available hits by processing only about 7 % of a screening da-
tabase,[10] which presents a substantial enrichment of com-
pound recall through sequential screening. Furthermore,
ligand similarity has been related to docking scores[13] and
ligand-based virtual screening and docking methods have also
been extensively compared.[14] Such comparisons have fre-
quently suggested superior performance of ligand- over struc-
ture-based screening methods.[14]

However, there are only relatively few investigations that go
beyond sequential structure- and ligand-based screening cal-
culations. For example, it has been well recognised that dock-
ing and similarity searching often produce different active scaf-
folds,[11] which suggests that these virtual screening ap-
proaches are complementary. Hence, their parallel application
might be expected to produce more (or more diverse) hits. Im-
portantly, this aspect of methodological complementarity ap-
plies to many ligand- and also structure-based virtual screen-
ing methodologies because they typically display a strong
target dependence.[5] A combination of docking and ligand-
based methods has also been suggested for target-focused li-
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brary design.[12] In this study, an extensive comparison of differ-
ent docking and similarity search protocols was carried out.
Docking calculations were, overall, found to be more robust in
hit identification than similarity search methods that generally
displayed more variation, although top enrichment factors ach-
ieved by structure- and ligand-based virtual screening did not
significantly differ.

In our study, we have attempted to systematically evaluate
the combination of similarity searching and docking. Rather
than comparing the relative performance of ligand- and struc-
ture-based screening, our major focal point has been the eval-
uation of integrated compound selection schemes. Calcula-
tions were carried out for nine different target proteins for
which significant numbers of diverse known active ligands
could be obtained. Given intrinsic limitations of docking and
scoring and similarity searching[1, 5] as well as the often dramat-
ic influence of search parameter variation on the results, we
have applied publicly available search protocols using standard
parameter settings to keep the calculations as simple and lucid
as possible and make them readily reproducible. Herein we
report a thorough analysis of the data we obtained and de-
scribe systematic trends that were observed.

Methods

Nine targets were selected from the Protein Data Bank (PDB)[15]

for our analysis and are listed in Table 1. The choice of targets
was mostly guided by ligand availability (see below) but also
by popularity in virtual screening. The MDL Drug Data Report
(MDDR)[16] was filtered to isolate 137 000 compounds with mo-
lecular weight �600. From these, between 211 and 2032
known active compounds were taken for each of our targets
and combined into activity sets. To avoid the inclusion of ana-
logue series in our study, that often bias similarity searching by
artificially increasing compound recall,[5] active compound sets
were filtered in the following manner. For all molecules in an
activity set, pairwise Tanimoto coefficient (Tc)[17] similarity was
calculated using MACCS structural keys.[18, 19] Molecules with a
Tanimoto coefficient value of 0.80 or greater relative to any
other active compound in the same set were iteratively re-
moved until all pairwise Tc values were smaller than 0.80. The
resulting compound sets contained between 52 and 640 active

molecules and had average Tc values of between 0.40 and 0.52
(see Table 1). Thus, the activity classes studied herein were
structurally diverse and did not contain molecules that would
generally be considered to be similar, and perhaps have similar
activity, on the basis of MACCS Tanimoto similarity, which is
the most widely accepted measure of structural resemblance.
As rigorous similarity threshold values for active compounds
were applied in our study, other property distribution criteria
were not considered.[20]

From all other remaining MDDR compounds, 10 000 mole-
cules were randomly selected as the background database
(BGDB) for docking and similarity searching. Database size was
limited to enable systematic docking calculations with fully
flexible ligands.

For flexible docking, two different methods were applied,
FlexX[21] and AutoDock.[22] For FlexX calculations, the union of
radii of 6.5 G centred on the atoms of the crystallographic
ligand in each target structure was defined as the active site
region for incremental conformational searching. Bound cofac-
tors were retained where applicable. The standard scoring
function according to Bçhm[23] was applied with suggested de-
fault parameter settings (FlexX version 2.2.1). For AutoDock cal-
culations, receptor structures were prepared using the Auto-
DockTools[24] with suggested parameter settings. Energy grid
maps of 60 J 60 J 60 grid points with distances of 0.375 G be-
tween them were calculated with ligand atom probes and cen-
tred on the coordinates of the crystallographic ligands. Dock-
ing sites generated for FlexX and AutoDock calculations were
generally comparable in size. During the conformational
search, ligand binding energies were calculated using the La-
marckian genetic algorithm of AutoDock.[25, 26] Default docking
parameters of AutoDock (version 4.0) were applied. The maxi-
mum number of energy evaluations was set to 1 750 000. For
all docking calculations, the complete compound activity sets
according to Table 1 were added to the background database
as potential hits.

Similarity searching was carried out using two different 2D
fingerprints, MACCS structural keys[18, 19] and MolPrint2D.[27, 28]

Although MACCS was used for preselection of active com-
pounds, it was also applied for database search calculations,
because similarity value ranges for active compounds were
clearly defined and no active compounds producing MACCS Tc

Table 1. Target protein and ligand information.[a]

Target Protein PDB ID Resolution [G] Inhibitors MinTc MaxTc AvTc StdDev

Thrombin (Thr) 1dwd[30] 3.00 238 0.110 0.798 0.480 0.118
Factor Xa (Xa) 1f0r[31] 2.10 393 0.200 0.797 0.507 0.119
Kinase C (KinC) 1aq1[32] 2.00 185 0.000 0.797 0.406 0.135
Thymidylate synthetase (TS) 2bbq[33] 2.30 52 0.113 0.798 0.468 0.106
Dyhydrofolate reductase (DHFR) 1hfr[34] 2.10 59 0.148 0.797 0.516 0.110
Phosphodiesterase IV (PDE4) 1q9m[35] 2.30 640 0.061 0.797 0.422 0.106
Phosphodiesterase V (PDE5) 1xp0[36] 1.79 150 0.179 0.797 0.490 0.100
Aldose reductase (AR) 1us0[37] 0.66 260 0.048 0.797 0.396 0.123
Acetylcholinesterase (AChE) 1eve[38] 2.50 262 0.054 0.797 0.403 0.132

[a] “Inhibitors” stands for the number of active compounds ultimately selected from the MDDR after Tanimoto coefficient (Tc) analysis. “MinTc”, “MaxTc”,
and “AvTc” report the minimum, maximum, and average Tc values, respectively, of exhaustive pairwise compound comparisons with MACCS structural
keys. “StdDev” reports the standard deviation of the Tc values.
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values >0.8 were available. Thus, these search calculations
also provided a meaningful reference. For each search calcula-
tion, 100 sets of five reference molecules were randomly taken
from each activity set. The similarity of a database compound
to the reference molecules was calculated using Tc and the 5-
NN nearest neighbour search strategy,[29] that is, for each data-
base compound, Tanimoto similarity over all five reference
molecules was averaged to obtain the final similarity score.
This nearest neighbour search protocol ensured that contribu-
tions of all five reference molecules were equally weighted
during database compound ranking. Similarity searching was
carried out with 100 randomly selected reference sets, whereas
the remaining active compounds were added in each case to
the background database as potential hits. To enable an exact
comparison of compound recall for docking and similarity
searching, the five reference molecules selected for each simi-
larity search calculation were also eliminated from the docking
lists when the results were compared.

The results of separate docking and similarity search calcula-
tions were compared with the combination of the two ap-
proaches (that is, MACCS+FlexX, MACCS+ AutoDock, Mol-
Print2D +FlexX, MolPrint2D +AutoDock). For each of the 100
individual trials, results of similarity search and docking calcula-
tions were combined through rank fusion or parallel com-
pound selection. In rank fusion, the ranks from docking and
similarity searching were added to generate the final ranking
for each database compound. In parallel selection, compounds
at rank positions one, two, three, four, five, etc. were alternate-
ly selected from the individual docking and similarity search
ranking, until a predefined number of different compounds
was obtained (that is, compounds selected from both rankings
were only counted once). To compare the performance of indi-
vidual methods and their combination through rank fusion or
parallel selection, hit and recovery rates as well as enrichment
factors over random selection were calculated for a selection
set size of 500 database compounds and averaged over the
100 different trials. In addition, cumulative compound recall
curves were generated.

Results and Discussion

We have carried out a comparative analysis of similarity search
calculations using 2D fingerprints and multiple reference com-
pounds and standard docking calculations using different
methods. We have been interested to evaluate combinations
of docking and similarity searching through rank fusion and
parallel compound selection. For our analysis, we required suf-
ficiently large numbers of potential hits for each of our nine
targets to carry out a meaningful statistical analysis of the re-
sults. When selecting ligands from the MDDR, care was taken
to avoid the inclusion of very similar compounds, which might
favour similarity searching over structure-based screening.
Avoiding the selection of active compounds with MACCS Tani-
moto similarity above 0.80 limited the number of available li-
gands for two of nine targets (TS and DHFR in Table 1) but en-
sured that the activity sets were diverse. For our systematic
search calculations, two fingerprints of different complexity

and two distinct docking methods were used so that the re-
sults we obtained were not dependent on specific features of
an individual methodology. Furthermore, to rule out the de-
pendence of similarity search results on the chosen reference
compounds, calculations were carried out with 100 randomly
chosen reference sets and the results averaged.

We first determined cumulative compound recall for the
top-scoring 10 % of the screening database for similarity
searching, docking, and two alternative combinations of indi-
vidual methods. Representative results are shown in Figure 1.
Cumulative recall curves in Figure 1 are complemented by
graphs comparing docking score and Tc value distributions ob-
tained for potential hits and other database compounds. The
upper left section of these graphs contains compounds with
high Tanimoto similarity to reference compounds and most fa-
vourable (that is, negative) docking scores. Thus, these com-
pounds are preferentially selected by both similarity searching
and docking. By contrast, the upper right segment contains
compounds that are recovered by similarity searching but not
docking and the lower left segment compounds detected by
docking but not similarity searching. Compounds in the lower
right segment are not recovered by either methodology. The
examples shown in Figure 1 mirror the different trends we ob-
served. It should be noted that Tc values calculated with Mol-
Print2D are generally much lower than those calculated with
MACCS, which is an intrinsic feature of these fingerprints and
has per se no chemical meaning. Distributions of Tc values cal-
culated with MolPrint2D typically do not reach high Tc levels.
Figures 1 a and b show examples of method combinations
where rank fusion or parallel compound selection, respectively,
improved the recall of active compounds over similarity
searching and docking. Figure 1 c–e show examples where sim-
ilarity searching performed much better than docking. Accord-
ingly, in these cases, rank fusion or parallel screening displayed
intermediate performance, with parallel selection producing
higher compound recall than rank fusion. In Figure 1 f, docking
clearly dominated the recall of active compounds. Thus, taken
together, systematic search calculations essentially revealed all
principally possible outcomes, dependent on the target and
search method, that is, either best performance of similarity
searching or docking or of one of two method combinations.

To complement the analysis of cumulative compound recall,
Table 2 reports the hit rates, recovery rates, and enrichment
factors over random selection for database selection sets of
500 compounds. For each target and docking algorithm, com-
binations with the MACCS and MolPrint2D fingerprints are re-
ported. Thus, each row in Table 2 corresponds to one of a total
of 36 combinations of search methods and compound selec-
tion protocol (that is, parallel selection and fusion). We ob-
served that docking calculations failed to enrich active com-
pounds for three of the nine targets using FlexX and for four
targets using AutoDock. For two of nine targets (AR and
AChE), both FlexX and AutoDock failed. By contrast, similarity
searching always enriched active compounds.

Despite the use of only standard parameter settings, signifi-
cant enrichment factors were observed for both docking (be-
tween 2 and 11) and similarity searching (between 3 and 18).
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FlexX and AutoDock achieved hit rates of up to 44 % and 13 %,
respectively, and with the exception of target PDE5, FlexX con-
sistently performed better than AutoDock. The MACCS and
MolPrint2D fingerprints produced hit rates of up to 19 % and
51 %, respectively, and with the exception of AR, MolPrint2D
consistently achieved higher hit rates. Overall, 2D similarity
searching performed considerably better than docking or
method combinations. For 24 of 36 comparisons reported in
Table 2, fingerprints produced the top hit and recovery rates
(HR and RR). In one case (for PDE4), MACCS and rank fusion
with FlexX achieved identical rates. Only in two instances did
FlexX calculations perform best, in three cases rank fusion was
best and parallel selection produced highest compound recall
in five cases. In two other instances (for TS and DHFR), rank
fusion produced the same rates as similarity searching.

The dominance of similarity searching in these calculations
is notable because very similar compounds (with MACCS Tc�
0.8) that would be easily detected in fingerprint similarity
searching were eliminated from compound activity sets. When
analysing compound selections in detail we also found that
rank fusion and parallel selection did generally not enrich simi-
larity search over docking hits in final selections. Furthermore,

these integrated compound selection schemes did not in-
crease the average similarity of hits when compared with indi-
vidual similarity search or docking selections. These findings
further suggest that relative similarity or diversity of active
compounds was not a major determinant of differences in
search performance between similarity searching and docking
observed in our study. On the other hand, it is well appreciated
that the success of structure-based virtual screening often criti-
cally depends on the introduction of docking constraints and,
even more so, on the inclusion of expert knowledge and visual
inspection of hypothetical complexes involving high-scoring
candidate compounds.[1, 2] As we deliberately omitted knowl-
edge-based manipulations, the results of the calculations re-
ported here fully depended on the application of standard
scoring schemes. Under these calculation conditions, a clear
trend in favour of similarity searching was observed.

Differences in hit rates between similarity searching and
docking were mostly larger than 5 %. When the search perfor-
mance between two methodologies significantly differs, com-
binations of these methods would, in principal, be expected to
yield intermediate results, and this can indeed be seen for the
majority of comparisons reported in Table 2. Only in relatively

Figure 1. Comparison of search performance. Panels a–f show representative examples of our calculations: a) MACCS +FlexX in Thr, b) MACCS +AutoDock in
Xa, c) MolPrint2D+FlexX in TS, d) MolPrint2D+ AutoDock in KinC, e) MolPrint2D +FlexX in PDE4, f) MACCS +FlexX in Xa. In the panel on the left, cumulative
recall curves are shown for similarity searching (green line), molecular docking (cyan), and the combination of both methods by means of rank fusion (black)
or parallel selection (purple). Results are averaged over 100 different trials. In the panel on the right, docking scores of compounds are plotted against Tc sim-
ilarity values for one randomly selected trial. Blue dots represent inactive and red triangles represent active molecules. For the calculation of Tc similarity
values, five reference compounds and the 5-NN approach were used. The Tc values of these five reference compounds were arbitrarily set to 1.0 so that their
docking scores can be monitored at the top of each chart.
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few cases, were very similar recovery rates observed for dock-
ing and similarity searching, for example, for FlexX and
MACCS/MolPrint2D calculations on Thr or FlexX and Mol-
Print2D calculations on KinC. In these cases, rank fusion and
parallel selection further improved search performance. How-
ever, in six other cases, combination of docking and similarity
search results also further increased compound recall from sim-
ilarity searching. Thus, we would anticipate that combinations
of docking and similarity searching will be attractive in many
practical screening applications when calculation protocols
and search parameters are tuned in a target-specific manner.
Importantly, for 32 of 36 cases in Table 2, parallel compound
selection achieved higher compound recall than rank fusion.
Thus, on the basis of these findings, parallel selection of
unique compounds from docking and similarity search rank-
ings represents a clearly preferred search strategy. Parallel se-
lection should be superior to data fusion schemes when the
overlap between high-scoring candidate compounds from
docking and similarity searching is limited, which has been

mostly the case in our calculations. Thus, parallel selection
takes the complementarity of different types of search calcula-
tions into account more than rank fusion, which presents a sig-
nificant advantage.

Conclusions

In this study, we have carried out standard docking and simi-
larity search calculations in a systematic manner on a variety of
targets and combined these approaches in different ways. We
have attempted to eliminate subjective elements from our cal-
culations to ensure that these calculations can be readily re-
produced and, in addition, to enable an unbiased statistical
analysis of the results. In the majority of test cases, combina-
tion of docking and similarity search results did not further im-
prove compound recall of the better performing approach.
However, in 25 % of the calculations, an improvement was ob-
served for such combinations, despite significant differences in
search performance of the individual methods. Parallel selec-

Table 2. Hit rates, recovery rates, and enrichment factors.[a]

Target
Protein

Molecular Docking Similarity Searching Rank Fusion Parallel Selection

HR RR EF HR RR EF HR RR EF HR RR EF

Thr
FlexX

18.6 39.9 8 MACCS 17.7 38.0 8 22.7 48.8 10 22.5 48.2 10
18.6 39.9 8 MolPrint2D 21.2 45.4 9 25.8 55.3 11 25.3 54.3 11

AutoDock
4.7 10.1 2 MACCS 17.7 38.0 8 12.4 26.6 5 13.6 29.2 6
4.7 10.1 2 MolPrint2D 21.2 45.4 9 12.3 26.3 5 17.9 38.4 8

Xa
FlexX

44.4 57.3 11 MACCS 18.1 23.3 5 32.1 41.3 8 40.0 51.6 10
44.4 57.3 11 MolPrint2D 33.1 42.7 9 42.6 54.8 11 44.7 57.6 12

AutoDock
13.3 17.2 3 MACCS 18.1 23.3 5 17.3 22.3 4 20.2 26.1 5
13.3 17.2 3 MolPrint2D 33.1 42.7 9 21.1 27.2 5 32.3 41.6 8

KinC
FlexX

15.0 41.6 8 MACCS 6.2 17.2 3 11.2 31.2 6 13.4 37.2 7
15.0 41.6 8 MolPrint2D 13.2 36.5 7 15.7 43.7 9 16.9 47.0 9

AutoDock
5.1 14.1 3 MACCS 6.2 17.2 3 7.5 20.9 4 7.2 19.9 4
5.1 14.1 3 MolPrint2D 13.2 36.5 7 10.2 28.2 6 12.8 35.6 7

TS
FlexX

2.9 30.8 6 MACCS 4.7 50.3 10 4.1 44.0 9 4.9 52.4 10
2.9 30.8 6 MolPrint2D 7.3 77.4 15 5.2 55.6 11 7.3 78.1 16

AutoDock
0.4 3.9 1 MACCS 4.7 50.3 10 1.7 17.6 4 4.0 42.9 9
0.4 3.9 1 MolPrint2D 7.3 77.4 15 2.5 26.7 5 7.0 74.2 15

DHFR
FlexX

3.5 32.0 6 MACCS 7.8 72.3 14 6.2 57.3 11 7.8 72.4 14
3.5 32.0 6 MolPrint2D 9.7 90.1 18 6.4 59.6 12 9.9 92.0 18

AutoDock
1.6 15.2 3 MACCS 7.8 72.3 14 5.4 49.6 10 6.9 64.0 13
1.6 15.2 3 MolPrint2D 9.7 90.1 18 5.4 49.7 10 9.7 90.0 18

PDE4
FlexX

10.7 8.5 2 MACCS 18.8 14.8 3 18.8 14.8 3 16.4 12.9 3
10.7 8.5 2 MolPrint2D 50.7 39.9 8 31.5 24.8 5 40.1 31.6 6

AutoDock
4.2 3.3 1 MACCS 18.8 14.8 3 9.6 7.6 2 12.3 9.7 2
4.2 3.3 1 MolPrint2D 50.7 39.9 8 17.4 13.7 3 36.1 28.4 6

PDE5
FlexX

1.9 6.7 1 MACCS 7.0 24.0 5 4.2 14.5 3 5.1 17.4 3
1.9 6.7 1 MolPrint2D 11.8 40.6 8 6.7 23.2 5 10.0 34.6 7

AutoDock
2.3 8.1 2 MACCS 7.0 24.0 5 4.9 17.0 3 5.5 19.1 4
2.3 8.1 2 MolPrint2D 11.8 40.6 8 7.6 26.2 5 10.6 36.5 7

AR
FlexX

0.39 0.8 0.2 MACCS 9.83 19.3 4 2.86 5.61 1 6.8 13.3 3
0.39 0.8 0.2 MolPrint2D 9.24 18.1 4 2.34 4.58 1 7.01 13.8 3

AutoDock
0.79 1.6 0.3 MACCS 9.83 19.3 4 4.19 8.23 2 6.77 13.3 3
0.79 1.6 0.3 MolPrint2D 9.24 18.1 4 2.88 5.64 1 6.9 13.5 3

AChE
FlexX

0.99 1.9 0.4 MACCS 7.29 14.2 3 2.6 5.07 1 4.83 9.39 2
0.99 1.9 0.4 MolPrint2D 17.9 34.8 7 4.06 7.91 2 14.6 28.4 6

AutoDock
1.37 2.7 1 MACCS 7.29 14.2 3 4.42 8.6 2 5.35 10.4 2
1.37 2.7 1 MolPrint2D 17.9 34.8 7 7.07 13.8 3 15 29.1 6

[a] Reported are hit rates (“HR”), recovery rates (“RR”), and enrichment factors (“EF”) over random compound selection for selection sets of 500 molecules.
All results are averaged over 100 different similarity search trials.
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tion of unique compounds from docking and similarity search
rankings, which addresses the potential complementarity of
structure- and ligand-based screening was found to be much
more effective than rank fusion which has more of an averag-
ing effect. On diverse compound activity classes, similarity
searching using 2D fingerprints systematically produced higher
compound recall than docking calculations using default pa-
rameter settings. For practical virtual screening applications,
parallel structure- and ligand-based screening with comple-
mentary selection of unique high-scoring compounds seems
to be a promising approach that should merit further investi-
gations.
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